RECONSIDERING THE TRC

ACEEE SUMMER STUDY AUGUST 20, 2010

Chris Neme, Energy Futures Group

Acknowledgements & Thanks

- Co-author: Marty Kushler
- Reviewers
- Panel Leader

EFG Consulting

Areas of Expertise

- Program Design
- Policy Development
- Building Codes
- Evaluation
- Cost-Effectiveness

Range of Clients

- Govt. Agencies
- Advocates
- Regulators
- Utilities

Clients in more than 10 states/provinces, plus regional, national and international organizations.

Presentation Overview

- 1. Overview of 5 Cost-Effectiveness Tests
- 2. Problems with the TRC
- 3. Options for Addressing the TRC's Problems

The 5 Tests

	Partic.	RIM	TRC	SCT	PACT			
Benefits								
Primary Fuel(s) Avoided Supply Costs		✓	✓	 ✓ 	✓			
Secondary Fuel(s) Avoided Supply Costs			 ✓ 	✓				
Primary Fuel(s) Bill Savings (retail prices)	✓							
Secondary Fuel(s) Bill Savings (retail prices)	✓							
Other Resource Savings (e.g. water)	✓		 ✓ 	 ✓ 				
Environmental Benefits				 ✓ 				
Other Non-Energy Benefits			Rarely	In Theory				
Costs	- I	1	1					
Program Administration		✓	✓	✓	✓			
Measure Costs								
Program Financial Incentive		✓	✓	 ✓ 	✓			
Customer Contribution	✓		✓	 ✓ 				
Utility Lost Revenue		✓						

Which Test is Predominant?

Many jurisdictions use multiple tests

- Don't have to pass all
- Provides useful insights into range of issues

TRC or SCT primary test most jurisdictions

- PACT is primary in a few states (e.g., MI & CT)
- RIM not primary anywhere any more?

Problems with the TRC

- Doesn't include non-energy benefits (NEBs)
 - "apples" (all costs) to "oranges" (only energy bens)
 - Societal test includes NEBs in theory, but not practice
- Never applied to supply investments
 - Puts DSM at competitive disadvantage

Are TRC Problems Important?

Maybe not critical in the past...

- Simpler programs
- Smaller DSM budgets
- Smaller DSM goals
- Increasingly important today
 - Much more aggressive goals
 - Program strategies that emphasize NEBs
 - NEBs often worth more than energy benefits

TRC and Home Performance

(2,653)

0.71

(screening without NEBs)

Costs					
Measures					\$7,500
Administration					\$1,500
Total					\$9,000
Domofito					
Benefits	_				
	Т	herms	kWh	kW	
Energy Savings		300	750	0.6	
Savings Life -Yrs		20	10	10	
Avoided Cost/Unit		\$1.35	\$0.14	\$115	
Value	\$	4,645	\$ 1,020	\$ 682	\$ 6,347
Net Benefits					\$ (2,653)
Benefit-Cost Ratio					0 71

Remediation Options

- 10
- 1. Adjust cost to "energy portion only"
- 2. Add NEBs to screening
- 3. Switch tests to the PACT/UTC

Cost Adjustments

11

Advantages

- "apples to apples"
- Fewer cost-effective programs fail screening

Disadvantages

- More \$ on evaluation
- Needs to be repeated
 - Early adopters different
 - Program changes
- Difficult to be prospective
- Not economically optimal
 - Cost reduction can be less than value of NEBs

Summary: better than nothing; help for selected programs.

Add NEBs to Screening

Advantages

- Most accurate choice
- All societally costeffective programs pass

Disadvantages

- Lots more \$ on evaluation
 - If addressing all key NEBs
- Needs to be repeated
 - Early adopters different
 - Program changes
- Difficult to be prospective
- Very complex, controversial

Summary: theoretically ideal, but will never happen.

Switch to PACT/UCT

Advantages

- "apples to apples"
- Simplest choice
- Least expensive option
- Symmetry w/supply side
- Utility ratepayer optimal

Disadvantages

- Not societally optimal
 - But rate-payer optimal

Summary: most workable solution for utility regulation now.

Application of Fixes

(Home Performance example)

	Seconoria		TRC Today	TRC Cost		
	Scenario		TRC Today	Adjusted	W/INEDS	PACI
Costs						
Measure Costs		\$7,500				
Rebate	33%	\$2,500	\$2,500	\$2,500	\$2,500	\$2,500
Participant	67%	\$5,000	\$5,000	\$5,000	\$5,000	
Administration		\$1,500	\$1.500	\$1,500	\$1.500	\$1.500
		1 ,	. ,	. ,	. ,	. ,
Customer Attribution o	f Costs					
Energy Reasons		50%				
Non-Energy Reasons		50%				
Cost Adjustment \$ (3.750)		-\$3.750				
		Ψ (3,730)		-40,700		
Total Costs			\$9,000	\$5.250	\$9 000	\$4,000
			ψ0,000	ψ0,200	ψ0,000	ψ - ,000
Benefits						
Energy - Avoided C	osts	\$ 6,000	\$6,000	\$6,000	\$6,000	\$6,000
Non-Energy		\$ 6,000	+ -)	+ -)	\$6,000	+ -)
		<u> </u>	1		- /	
Total Benefts			\$6.000	\$6.000	\$12,000	\$6.000
			+-,	+ - ,		+ - ;
Net Benefits			-\$3.000	\$750	\$3.000	\$2.000
			FAIL	PASS	PASS	PASS

14

Many Programs Affected

15

- Used Home Performance as Example...
- But Issues Apply to Many Others
 - C&I retrofits
 - New Construction
 - Rooftop PV
 - Etc.

Chris Neme, Energy Futures Group 802-482-5001 ext. 1 cneme@energyfuturesgroup.com